Failure Troubleshooting

- Drill Bits – Top Hammer and DTH
- Drill Rods – Hand-held, Extension, and Drift & Tunneling
- Couplings & Coupling Adapters
- Shank Adapters
Table of Contents

Common Problems

Drill Bits

- Top Hammer & DTH
 - Button Carbide Bits – Head
- Top Hammer
 - Cross (Blade Carbide) Bits – Head
 - Tapered Bits – Body
 - Threaded Bits – Body
- DTH
 - DTH Bits – Shank

Couplings & Coupling Adapters

Drill rods

- Integral Rods, Tapered Rods, & Shank Rods
 - Shank (Collared) End
- Integral Rods
 - Integral End
- Tapered Rods
 - Tapered End
- M/F Extension Rods & M/F Drift & Tunneling Rods
 - Female Thread End
- Extension Rods, Drift & Tunneling Rods, Shank Rods
 - Male Thread End
 - Hex Steel & Round - Steel Shaft

Shank Adapters

Failure Summary Index
ROCKMORE’s rock drilling tools are manufactured to the highest quality standards. Even in the most challenging environments that rock drilling can offer, our products will exhibit expected performance.

The most common causes of failure are:

- Improper working practices
- Incorrect service operations
- Poor operating procedures
- Extreme field conditions
- Incorrect tool selection for required rock conditions
Failure Troubleshooting

Drill Bits
Top Hammer and DTH
Drill bits will last longer and cut faster when carbides are sharpened and the steel matrix is properly maintained.

Button carbides should be sharpened when they attain flats that are 1/4 (one quarter) of their major diameter. Blade carbide should be sharpened when it attains flats that are no greater than 1/8” or 3.175 mm.

Dull carbide buttons will drill slower and fatigue faster, encouraging failure of the carbides and the steel matrix.

Before drilling, inspect the condition and lubrication of all drill string components, including the hammer or drifter. Replace any worn out parts, following manufacturer’s recommended discard limits closely.
Drill Bits: Top Hammer and DTH
- Button Carbide Bits – Head -

Common Problems & Failures

Diagram 1 of 3

Steel Matrix

Carbide pop-out (F1, pg. 9)

Carbide broken inside socket (F2, pg. 10)

Face Carbide Inserts

Gauge Carbide Inserts

Top of carbide sheared off at body (F3, pg. 10)

Crack in body near carbide (F4, pg. 11)

Feb 8, 2018
Crack in body originating from bottom of carbide socket (F5, pg. 11)

Carbide intact, surrounding matrix damaged (F6, pg. 11)

Crack on face between flushing holes, flushing hole and carbide, or between carbides (F7, pg. 12)

Top of carbide crushed down to level of body (F8, pg. 13)

Carbide crushed inside body (F9, pg. 13)
Carbide partially missing, surrounding matrix damaged (F10, pg. 14)

Carbide completely missing, surrounding matrix damaged (F11, pg. 14)

Carbide chipped (F12, pg. 15)

Carbide cracked (F13, pg. 15)
Drill Bits: Top Hammer and DTH
- Button Carbide Bits – Head -

Failure:
Carbide pop-out

Cause of failure:
- Excessive body wash
- Excessive bit body grinding
- Drilling in very soft or extremely abrasive conditions
- Drilling in excessive unconsolidated rock
- Excessive energy produced by the piston or drifter
- Insufficient feed pressure
- Back hammering / dry firing

Action required:
- See page 17 for body wash problems
- Follow proper carbide sharpening procedures to avoid over grinding bit body; replace worn out bits
- Adjust drilling parameters to rock conditions
- Adjust feed pressure to rock conditions
- Stop percussion until the bit is in full contact with rock
Drill Bits: Top Hammer and DTH
- Button Carbide Bits – Head -

Failures:
Carbide broken inside socket &
Top of carbide sheared off at body

Cause of failures:
• Over heating of the bit
• Drilling with flat carbides
• Forceful rotation against obstacles in rock

Action required:
- Adjust rotation speed and other drilling parameters to rock conditions
- Sharpen dull carbides, following proper carbide sharpening procedures
- Adjust feed pressure to rock conditions; in difficult drilling conditions--such as loose or fractured material, or when encountering obstructions--use already damaged bits to avoid damaging bits in good condition

Feb 8, 2018
Problems:
Crack in body near carbide; Crack in body originating from bottom of carbide socket; & Carbide intact, surrounding matrix missing

Cause of problems:
• Excessive interference between the bit and the carbide

Action required:
▪ Return to manufacturer for analysis
Drill Bits: Top Hammer and DTH
- Button Carbide Bits – Head -

Problems:
Crack on face between flushing holes, flushing hole and carbide, or between carbides

Cause of problems:
• Excessive feed force
• Drilling with flat carbides

Action required:
• Adjust feed force to rock conditions
• Sharpen dull carbides, following proper carbide sharpening procedures

F7
(see pg. 7)
Drill Bits: Top Hammer and DTH
- Button Carbide Bits – Head -

Failures:
Top of carbide crushed down to level of body &
Carbide crushed inside body

Cause of failures:
• Over drilling in a non-abrasive rock, such as limestone
• Improper carbide grinding intervals
• Excessive carbide protrusion from poor grinding practices

Action required:
▪ Inspect carbides frequently for snake skin wear pattern (see page 18)
▪ Shorten grinding intervals when drilling in non-abrasive rock
▪ Sharpen carbides when dull or micro cracks begin to form, following proper carbide sharpening procedures
▪ When sharpening carbides do not remove excessive body; carbides should not protrude more than 3/4 of the carbide diameter
Failures:
Carbide partially missing, surrounding matrix damaged & Carbide completely missing, surrounding matrix damaged

Cause of failures:
- Over drilling of bit
- Drilling with flat carbides
- Improper grinding intervals
- Drilling with a bit already missing carbide

Action required:
- Inspect carbides more frequently
- Sharpen dull carbides, following proper carbide sharpening procedures
- Increase grinding intervals
- Discard and replace worn out or damaged bits
Drill Bits: Top Hammer and DTH
- Button Carbide Bits – Head -

Failures:
Carbide chipped & Carbide cracked

Cause of failures:
- Over drilling of bit
- Drilling in a non-abrasive rock
- Improper grinding intervals
- Carbide grade too hard for the rock condition
- Slow rotation and bit is not positioned into solid rock

Action required:
- Inspect carbides frequently for snake skin wear pattern (see page 18)
- Sharpen carbides when dull or micro cracks begin to form, following proper carbide sharpening procedures
- Select bits with suitable carbide hardness for drilling application
- Do not start percussion until the bit is in full contact with rock

F12
(see pg. 8)

F13
(see pg. 8)
Problem:
Face cracking

Cause of problem:
• Excessive feed force

Action required:
▪ Reduce feed force until the carbides engage in the rock
▪ When drilling deep holes, “pull back” may need to be used to compensate for the weight of the drill string pushing on the bit excessively
Problem:
Body wash – Excessive steel wear on the bit body and bit face

Cause of problem:
• Drilling in extremely abrasive conditions

Action required:
▪ Slow rotation as much as possible to help create larger cuttings that will flush up the hole more efficiently
▪ Maximize flushing
▪ Use drilling foam to help flush or lift the rock cuttings
▪ Clean drill holes regularly
▪ Adjust hammer choke to reduce up-hole velocity of rock cuttings
Problem:
Carbide snake skin wear pattern *

Cause of problem:
• Drilling in a non-abrasive rock, such as limestone
• Improper carbide grinding intervals

Action required:
▪ Inspect carbides frequently
▪ Shorten grinding intervals when drilling in non-abrasive rock
▪ Sharpen carbides when dull or micro cracks begin to form, following proper carbide sharpening procedures

* Snake skin is a wear pattern of micro cracks that develop from drilling fatigue in non-abrasive rock. The cracks will eventually penetrate deeper and cause large chunks to break away, see F8, F9, F12, & F13.
Carbide buttons are designed to resist compressive forces not shear forces.
As the carbide buttons start to wear, they develop a flat surface. As the flat
enlarges the load on the carbide changes from compressive to shear.
Drill Bits: Top Hammer
- Cross (Blade Carbide) Bits – Head -

Common Problems & Failures

Diagram 1 of 2

- Insert corner fractured (F14, pg. 23)
- Longitudinal cracks (F17, pg. 26)
- Lost insert (F15, pg. 24)
- Traverse crack (F16, pg. 25)
Drill Bits: Top Hammer
- Cross (Blade Carbide) Bits – Head -

Common Problems & Failures

Diagram 2 of 2

Shattered insert
(F18, pg. 27)
Drill Bits: Top Hammer
- Cross (Blade Carbide) Bits – Head -

Failure:
Insert corner fractured

Cause of failure:
- “Pinching” in the hole: hole diameter smaller than bit diameter
- Bad collaring practices
- Sharp corners or anti-taper after grinding
- Snake skin wear pattern (see page 18)

Action required:
- Do not drill into a pre-existing hole with a larger bit
- Follow drill manufacturer’s recommended collaring procedures
- For multi-use carbide: sharpen dull carbides, following proper carbide sharpening procedures
- For single-use carbide: replace bits when carbides are dull
- Inspect carbides more frequently
Drill Bits: Top Hammer
- Cross (Blade Carbide) Bits – Head -

Failure:
Lost insert

Cause of failure:
• Braze joint fatigued
• Insufficient feed pressure

Action required:
▪ Discard and replace worn out bits
▪ Adjust feed pressure to rock conditions

F15
(see pg. 21)
Failures:

Traverse crack

Cause of failure:
• Over heating from improper grinding
• Grinding scratches from improper grinding wheel
• Anti-taper from abrasive rock

Action required:
- Sharpen dull carbide, following proper carbide sharpening procedures
- Shorten grinding intervals when drilling in abrasive rock

F16
(see pg. 21)
Failure: Longitudinal cracks

Cause of failure:
- Over drilling of bit
- Drilling when the insert has excessive flats

Action required:
- Inspect carbides more frequently
- For multi-use carbide: shorten grinding intervals when drilling in abrasive rock
- For multi-use carbide: sharpen dull carbide (when it attains flats that are no greater than 1/8” or 3.175 mm), following proper carbide sharpening procedures
- For single-use carbide: replace bits when carbides are dull
Drill Bits: Top Hammer
- Cross (Blade Carbide) Bits – Head -

Failure:
Shattered insert

Cause of failure:
• Over drilling of bit
• Overheating the insert when re-sharpening
• Insufficient flushing

Action required:
- Inspect carbides more frequently
- For multi-use carbide: shorten grinding intervals when drilling in abrasive rock
- For multi-use carbide: sharpen dull carbide (when it attains flats that are no greater than 1/8” or 3.175 mm), following proper carbide sharpening procedures
- For single-use carbide: replace bits when carbides are dull
- Adjust flushing pressure to rock conditions
Drill Bits: Top Hammer
- Tapered Bits – Body -

Common Problems & Failures

Diagram 1 of 1

Skirt wring off (F19, pg. 29)

Split skirt (F20, pg. 30)
Drill Bits: Top Hammer
- Tapered Bits – Body -

Failure:
Skirt wring off

Cause of failure:

- Worn, broken, or mismatched taper
- Worn out or improper taper on the rod or the bit
- Excessive wear on the skirt

Action required:

- Use a taper gauge to check bit and drill rod taper angles
- Make sure drill rod and bit connections are in good condition
- Replace worn out bits or drill rods

F19
(see pg. 28)
Drill Bits: Top Hammer
- Tapered Bits – Body -

Failure:
Split skirt

Cause of failure:
- Taper mismatch
- Worn taper
- Removing the bit with a miner’s wrench

Action required:
- Use a taper gauge to check bit and drill rod taper angles
- Discard and replace worn out bits
- Use a proper knock-off block when removing bit from drill rod

F20
(see pg. 28)
Drill Bits: Top Hammer
- Threaded Bits – Standard Body -

Common Problems & Failures

Diagram 1 of 2

Split skirt
(F22, pg. 34)

Skirt wring off
(F21, pg. 33)
Drill Bits: Top Hammer
- Threaded Bits – Retrac Body -

Common Problems & Failures

Diagram 2 of 2

Split skirt (F24, pg. 34)

Skirt wring off (F23, pg. 33)
Drill Bits: Top Hammer
- Threaded Bits – Standard & Retrac Body -

Failure:
Skirt wring off

Cause of failure:
- Misalignment from hole deviation
- Improper feed pressure
- Excessive rotational loads from drilling with dull carbides
- Worn, broken, or mismatched threads
- Steel fatigue
- Dents on outside surface of drill rod

Action required:
- Use alignment tools and adjust drilling practices to achieve a straighter hole; use bits with drop center face design and/or retrac body
- Adjust feed pressure to rock conditions
- Sharpen dull carbides, following proper carbide sharpening procedures
- Make sure drill rod and bit joints are in good condition
- Use Rockmore International components; do not mix component brands
- Replace worn out drill string components
- Do not hammer or strike the outside body of the bit
Drill Bits: Top Hammer
- Threaded Bits – Standard & Retrac Body -

Failure:
Split skirt

Cause of failure:
• Misalignment from hole deviation
• Worn-out threads
• Drilling with loose thread joints

Action required:
▪ Use alignment tools and adjust drilling practices to achieve a straighter hole; use bits with drop center face design and/or retrac body
▪ Replace worn out drill string components
▪ Make sure thread joints are tight before starting percussion
Drill Bits: DTH
- DTH Carbide Button Bits -

Bit Elements

- Head
- Shank
- Gauge Carbides
- Face Carbides
- Wear Carbides
- Shoulder
- Drive Splines
- Retaining Ring Bearing Surface
- Blow Tube / Foot Valve (if applicable)

Feb 8, 2018
Failure: Shank break across the retaining ring bearing surface

Cause of failure:
- Lack of lubrication
- Worn out bit retaining rings
- Worn out guide bushing (not applicable for Rockmore’s ROK series DTH hammers)

Action required:
- Use the correct type and quantity of hammer oil
- Inspect the condition of the bit, retaining rings, and guide bushing before drilling
- Replace worn out hammer components with new parts
Drill Bits: DTH
- DTH Bits – Shank -

Failure:
Shank break across the drive splines

Cause of failure:
• Oversized head diameter, in relation to DTH hammer diameter
• Excessive torque
• Worn out driver sub

Action required:
▪ Adjust drill settings when using oversized drill bits
▪ Use a larger DTH hammer recommended for that diameter of bit
▪ Adjust torque to rock conditions
▪ Inspect the condition of the bit and driver sub before drilling
▪ Replace worn out hammer components with new parts

Feb 8, 2018
DTH Bits – Shank
37
Failure:
Broken blow tube / foot valve

Cause of failure:
• Worn out piston, drive splines, or driver sub
• Misalignment
• Lack of lubrication

Action required:
▪ Inspect the condition of the piston, bit, and driver sub before drilling
▪ Replace worn out hammer components with new parts
▪ Use alignment tools and adjust drilling practices to achieve a straighter hole; use bits with concave face design
▪ Use the correct type and quantity of hammer oil
Failure:
Broken piston striking face

Cause of failure:
- Worn out piston, bit retaining ring, or driver sub
- Worn out guide bushing (not applicable for Rockmore’s ROK series DTH hammers)

Action required:
- Inspect the condition of the piston, bit retaining rings, driver sub and guide bushing before drilling
- Replace worn out hammer components with new parts
Problem: Shoulder damage

Cause of problem:
• Incorrect feed force

Action required:
• Adjust feed force to keep the carbide engaged in the rock. More will need to be applied when drilling into soft rock. Less will be needed as drill pipe is added and weight from the drill string increases the feed force.
Problem: Piston striking face damage

Cause of problem:
- Insufficient lubrication
- Foreign material trapped between the bit and piston

Action Required:
- Use the manufacturer's recommended type and quantity of hammer oil
- Keep the hammer joints tight; and clean the driver sub, bit retaining ring, and drive splines regularly
- Inspect hammer check valve assembly for proper function
Failure Troubleshooting

Couplings & Coupling Adapters
Problem:
Dented, chipped, or damaged striking end

Cause of problem:
• Employing percussion or rotation with the male rod thread end resting against the shoulder of the coupling (not fully connected)
• Feed misaligned
• Misalignment from hole deviation
• Threading rod too far

Action required:
• Do not rotate or employ percussion until the male threads are fully connected inside the coupling
• Ensure feed mechanism is aligned
• Use alignment tools and adjust drilling practices to achieve a straighter hole; use bits with drop center face design and/or retrac body
• Do not thread rod past center of coupling; for adapters connect larger thread first
Failure:
Longitudinal crack

Cause of failure:
- Drilling with loose thread joints
- Reverse rotation with percussion
- Dents on surface of steel
- Steel fatigue
- Hole deviation

Action required:
- Make sure all joints are properly lubricated and tight before employing percussion
- Do not reverse rotation
- Do not hammer or strike the outside of the coupling
- Use alignment tools and adjust drilling practices to achieve a straighter hole; use bits with drop center face design and/or retrac body

Couplings & Coupling Adapters
For Bit Adapters see male and female threads in drill rod section.
Cause of failure:
- Dents on surface of steel
- Steel fatigue
- Misalignment from hole deviation
- Inadequate feed pressure
- Excessive rotational loads from drilling with dull carbides
- Mismatching or poor quality threads

Action required:
- Do not hammer or strike the outside of the coupling
- Replace worn out couplings or drill rods
- Adjust drilling practices to achieve a straighter hole
- Adjust feed force to rock conditions.
- Use bits that have carbide in good condition
- Use Rockmore International components; do not mix component brands

Failure:
Transversal crack
Failure Troubleshooting

Drill Rods

Hand-held, Extension, and Drift & Tunneling
Drill Rods: Integral, Tapered, & Shank Rods
- Shank (Collared) End -

Common Problems & Failures, on Forged Shank End

Diagram 1 of 1

- Striking end mushrooming (F25, pg. 48)
- Failure in collar radius (F28, pg. 51)
- Failure at shank end (F26, pg. 49)
- Failure in middle of shank (F27, pg. 50)
- Failure in collar (F29, pg. 52)
Problem:
Striking end mushrooming

Cause of problem:
• Worn drill chuck bushing
• Disformed piston in drill
• Excessive operating pressures
• Improper heat treatment

Action required:
▪ Replace worn out drill chuck bushing
▪ Replace drill piston
▪ Adjust operating pressures to drilling conditions
▪ Return to manufacturer for analysis
Drill Rods: Integral, Tapered, & Shank Rods
- Shank (Collared) End -

Failure:
At shank end

Cause of failure:
• Worn drill chuck bushing

Action required:
▪ Replace worn out drill chuck bushing
Drill Rods: Integral, Tapered, & Shank Rods
- Shank (Collared) End -

Failure:
In middle of shank

Cause of failure:
- Worn drill chuck bushing
- Insufficient lubrication
- Excessive feed pressure

Action required:
- Replace worn out drill chuck bushing
- Ensure that sufficient amounts of shank lubrication oil is reaching the shank
- Adjust feed pressure to rock conditions
Failure:
At the beginning of collar radius

Cause of failure:
- Over heating from lack of lubrication
- Inadequate drill chuck bushing radius deforming the collar
- Misalignment from excessive play in worn drill bushing

Action required:
- Use the proper type and quantity of drill lubrication, checking often
- Check condition of drill chuck bushing, replace if necessary
Drill Rods: Integral, Tapered, & Shank Rods
- Shank (Collared) End -

Failure:
At the collar

Cause of failure:
• A distorted flush hole produced by the forging process

Action required:
▪ Return to manufacturer for analysis
Drill Rods: Integral Rods
- Integral End -

Common Problems & Failures, on Carbide End

Failure of the carbide
(F30, pg. 54)

“Propeller” carbide wear
(F31, pg. 55)
Drill Rods: Integral Rods
- Integral End -

Failure:
Carbide failure

Cause of failure:
• Improper grinding
• Overheating when sharpening
• Reverse taper
• Snake skin wear pattern (see page 18)

Action required:
▪ Sharpen dull carbide, following proper carbide sharpening procedures
▪ Inspect carbides more frequently
▪ Discard and replace worn out drill rods

F30
(see pg. 53)
Drill Rods: Integral Rods
- Integral End -

Failure:
“Propeller” carbide wear

Cause of failure:
- Insufficient flushing pressure
- Slow rotation

Action required:
- Increase flushing pressure
- Increase rotation speed

F31
(see pg. 53)
Common Problems & Failures, on Taper End

- Failure at start of taper (F33, pg. 58)
- Failure at end of taper (F32, pg. 57)
Cause of failure:
- Using a bit with a worn, damaged, or mismatched taper
- Using a bit with worn carbides in gauge row

Action required:
- Use a taper gauge to check bit and drill rod taper angles
- Discard and replace worn out or damaged bits
- Sharpen dull carbides, following proper carbide sharpening procedures
Failure: At the beginning of taper radius

Cause of failure:
• Using a bit with a worn, damaged, or mismatched taper
• Spinning in the socket

Action required:
▪ Use a taper gauge to check bit and drill rod taper angles
▪ Discard and replace worn out or damaged bits
▪ Adjust feed force and/or use a bit with a symmetrical carbide design

(see pg. 56)
Cause of failure:
- Drill string misalignment
- Hole deviation
- Inadequate feed pressure
- Excessive torque from drilling with dull bits
- Mismatched threads
- Dents or deformation from striking the steel surface

Action required:
- Make sure threads are tight and in good condition
- Use alignment tools and adjust drilling practices to achieve a straighter hole; use bits with drop center face design and/or retrac body
- Adjust feed pressure to rock conditions
- Sharpen dull carbides on bit, following proper carbide sharpening procedures
- Do not mix manufacturers’ components in the drill string
- Do not strike outside of the connection; use a proper wrench to loosen joints
Drill Rods: M/F Extension and M/F Drift & Tunneling Rods
- Female Thread End -

Problem:
Deformation of female end

Cause of problem:
- Drilling with loose thread joints
- Misalignment when threading rods together

Action required:
- Make sure thread joints are tight before starting percussion
- Make sure drill rods are aligned before threading together
Cause of failure:
- Hole deviation
- Worn threads
- Misalignment of drill rods when threading
- Drilling with loose thread joints

Action required:
- Use alignment tools and adjust drilling practices to achieve a straighter hole; use bits with drop center face design and/or retrac body
- Replace worn out drill string components
- Make sure drill rods are aligned before threading together
- Make sure thread joints are tight before starting percussion

Failure:
Vertical crack on the female end
Problem:
Excessive thread wear with pitting and/or galling

Cause of problem:
- Overheated threads from a loose coupling, loose bit, inadequate lubrication, or hole deviation
- Reflected percussive energy
- Free hammering (dry firing)
- Worn mating parts (coupling end or bits)

Action required:
- Make sure thread joints are tight before starting percussion
- Use the proper type and quantity of lubrication, checking often
- Adjust drilling parameters to rock conditions
- Sharpen dull carbides on bit, following proper carbide sharpening procedures
- Only employ percussion when bit is engaged in rock
- Replace worn out drill string components; do not fit a worn rod or bit onto a new rod
Cause of failure:
- Hole deviation
- Worn threads
- Bending from feed overpressure, or misalignment
- Excessive rotational loads from drilling with a worn out bit
- Poor drilling conditions or unconsolidated rock formations
- Using percussion while stuck in the drill hole

Action required:
- Use alignment tools and adjust drilling practices to achieve a straighter hole; use bits with drop center face design and/or retrac body
- Avoid coupling worn threads with new threads
- Adjust feed pressure to avoid bending of the drill string
- Sharpen dull carbides on bit, following proper carbide sharpening procedures
- Adjust drilling parameters to rock conditions
- Do not activate percussion when the drill string is stuck
Drill Rods: Extension, Drift & Tunneling Rods, and Shank Rods
- Male Thread End -

Failure:
Male end broken at face

Cause of failure:
• Drilling with dull bits
• Inadequate feed pressure
• Worn coupling or bit threads
• Misaligned drill rods while threading
• Fatigue failure from corrosion

Action required:
- Sharpen dull carbides on bit, following proper carbide sharpening procedures.
- Adjust feed pressure to rock conditions
- Make sure mating components are in good shape and are not deformed; replace worn out components
- Make sure joints are aligned before threading
- Take steps to reduce corrosion
Failure:
In shaft of rod

Cause of failure:
- Poor rod alignment
- Surface damage
- Improper heat treatment

Action required:
- Adjust drilling practices or bit design to achieve a straighter hole
- Be cautious not to damage drill rod when handling
- Return to manufacturer for analysis
Problem:
Inner surface compromised

Cause of problem:
- Corrosion from flushing agent
- Insufficient rust protection

Action required:
- Replace or maintain flushing agent
- Use proper storage techniques
Problem:
Outer surface compromised

Cause of problem:
- Bending from misalignment
- Excessive feed
- Surface damage of the rod from rubbing against steel
- Strikes from a hammer
- Improper handling
- Difficult drilling conditions

Action required:
- Make sure centralizer is in good working order; use alignment tools and adjust drilling practices to achieve a straighter hole; use bits with drop center face design and/or retrac body
- Adjust feed pressure to rock conditions
- Do not strike outside of drill rod; use a proper wrench to loosen joints
- Store rods in a rack when not in use; do not leave drill rods on the ground
- Adjust drilling parameters to rock conditions
Failure Troubleshooting

Shank Adapters
Shank Adapters

Common Problems & Failures

Diagram 1 of 2

Dented, chipped, or damaged striking end (F34, pg. 71)

Failure across the splines (F35, pg. 72)

Failure behind the threads (F41, pg. 78)

Damaged thread end (F43, pg. 80)

Failure at front bushing bearing surface (F40, pg. 77)

Failure across the threads (F42, pg. 79)

Spline shoulder wear on bottom (F36, pg. 73)
Shank Adapters

Common Problems & Failures

Diagram 2 of 2

Failure through flushing port (F39, pg. 76)

Spline shoulder wear on top (F37, pg. 74)

Galling and pitting on the splines (F38, pg. 75)

Galling and pitting on the threads (F44, pg. 81)
Problem:
Dented, chipped, or damaged striking end

Cause of problem:
• Misalignment from a worn out bushing or a damaged piston

Action required:
• Replace worn out components in rock drill, including but not limited to bushings and pistons

F34
(see pg. 69)
Failure:
Across the splines

Cause of failure:
• Inadequate or improper lubrication
• Excessive back hammering
• Getting rod stuck in unconsolidated rock
• Using a worn out chuck coupling
• Excessive rotational torque
• Inadequate feed pressure
• Drilling with dull bits

Action required:
• Use the proper type and quantity of lubrication, checking often
• Only employ percussion when bit is engaged in rock
• Use Retrac bits when drilling in difficult rock conditions
• Replace worn out chuck coupling
• Adjust drilling parameters to the rock conditions
• Sharpen dull carbides on bit, following proper carbide sharpening procedures
Problem:
Spline shoulder wear on bottom

Cause of problem:
• Excessive rotation when retracting the drill string
• Drill rod stuck in unconsolidated rock

Action required:
• Adjust rotational speed to the rock conditions
• Use Retrac bits when drilling in difficult conditions

F36
(see pg. 69)
Shank Adapters

Problem:
Spline shoulder wear on top

Cause of problem:
- Low feed pressure
- Worn out rotation bushing
- Non-functioning damping piston

Action required:
- Adjust feed pressure to rock conditions
- Replace worn out rotation bushings
- Repair or replace damping piston

(see pg. 70)
Problem: Galling and pitting on the splines

Cause of problem:
• Inadequate or improper lubrication
• Excessive rotational torque in unconsolidated rock
• Over heated hydraulic oil
• Excessive back hammering
• Getting rod stuck in unconsolidated rock

Action required:
- Use the proper type and quantity of lubrication, checking often
- Adjust drilling parameters to rock conditions.
- Cooling units may be added to the hydraulic system in cases of over heating
- Use Retrac bits when drilling in difficult conditions
Shank Adapters

Failure:
Through flushing port

Cause of failure:
- Corrosion from flushing agent
- Dirty flushing water
- Steel fatigue

Action required:
- Replace or maintain flushing agent
- Clean flushing water of solids
- Replace broken, damaged, or worn out drill components

(see pg. 70)
Shank Adapters

Failure:
At front bushing bearing surface

Cause of failure:
• Worn out front bushing causing misalignment
• Poor lubrication

Action required:
- Replace worn out front bushings
- Use the proper type and quantity of lubrication, checking often

(see pg. 69)
Shank Adapters

Failure:
Behind the threads

Cause of failure:
- Drilling with a misaligned boom
- Worn out front bushing causing misalignment
- Excessive feed

Action required:
- Align the boom prior to drilling
- Replace worn out front bushings
- Adjust feed pressure to rock conditions

F41
(see pg. 69)
Cause of failure:
- Poor drilling conditions
- Hole deviation
- Bending from excessive feed pressure
- Using percussion while stuck in the drill hole
- Drilling with loose thread joints
- Misaligned threads
- Using a worn coupling or drill rod
- Drilling with dull bits
- Inadequate thread lubrication

Action required:
- Adjust drilling parameters to the rock conditions
- Use alignment tools and adjust drilling practices to achieve a straighter hole; use bits with drop center face design and/or retrac body
- Do not activate percussion when the drill string is stuck
- Make sure thread joints are tight before starting percussion
- Make sure joints are aligned before threading together
- Use quality products when mating components
- Replace worn out couplings or drill rods
- Sharpen dull carbides, following proper carbide sharpening procedures
- Use the proper type and quantity of lubrication, checking often
Cause of failure:
- Adapter smashed into coupling
- Loose machine cradle
- Boom misaligned
- Adapter not coupled properly to drill rod
- Broken drill rod
- End of drill rod is not square

Action required:
- Make sure feed mechanism is aligned properly
- Align the boom prior to drilling
- Do not use worn out couplings; make sure joints are aligned before threading together
- Use new couplings with new shank adapters
- Replace worn out, damaged, or broken drill rods
- Regularly inspect condition of drill rod ends
Shank Adapters

Problem:
Pitting and/or galling on the threads

Cause of problem:
- Un-balanced feed pressure and percussion rate
- Drilling with loose thread joints
- Improper feed to rotation when threading joints together
- Inadequate or improper lubrication

Action required:
- Monitor joint temperatures; adjust percussion and feed pressures
- Make sure thread quality is good and use new couplings with new shank adapters; make sure thread joints are tight before starting percussion
- Adjust feed and rotation to thread specifications
- Use the proper type and quantity of lubrication, adding often

(see pg. 70)
<table>
<thead>
<tr>
<th>Product</th>
<th>Failure/Problem Type</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drill bits - top hammer & DTH - button carbide</td>
<td>Carbide pop-out</td>
<td>9</td>
</tr>
<tr>
<td>Drill bits - top hammer & DTH - button carbide</td>
<td>Carbide broken inside socket</td>
<td>10</td>
</tr>
<tr>
<td>Drill bits - top hammer & DTH - button carbide</td>
<td>Top of carbide sheared off at body</td>
<td>10</td>
</tr>
<tr>
<td>Drill bits - top hammer & DTH - button carbide</td>
<td>Crack in bit body near carbide</td>
<td>11</td>
</tr>
<tr>
<td>Drill bits - top hammer & DTH - button carbide</td>
<td>Crack in bit body originating from bottom of carbide socket</td>
<td>11</td>
</tr>
<tr>
<td>Drill bits - top hammer & DTH - button carbide</td>
<td>Carbide intact, surrounding matrix missing</td>
<td>11</td>
</tr>
<tr>
<td>Drill bits - top hammer & DTH - button carbide</td>
<td>Crack on bit face between flushing holes, flushing hole and carbide, or between carbides</td>
<td>12</td>
</tr>
<tr>
<td>Drill bits - top hammer & DTH - button carbide</td>
<td>Top of carbide sheared off at body</td>
<td>13</td>
</tr>
<tr>
<td>Drill bits - top hammer & DTH - button carbide</td>
<td>Carbide crushed inside bit body</td>
<td>13</td>
</tr>
<tr>
<td>Drill bits - top hammer & DTH - button carbide</td>
<td>Carbide partially missing, surrounding matrix damaged</td>
<td>14</td>
</tr>
<tr>
<td>Drill bits - top hammer & DTH - button carbide</td>
<td>Carbide completely missing, surrounding matrix damaged</td>
<td>14</td>
</tr>
<tr>
<td>Drill bits - top hammer & DTH - button carbide</td>
<td>Carbide chipped</td>
<td>15</td>
</tr>
<tr>
<td>Drill bits - top hammer & DTH - button carbide</td>
<td>Carbide cracked</td>
<td>15</td>
</tr>
<tr>
<td>Drill bits - top hammer & DTH - button carbide</td>
<td>Bit face cracking</td>
<td>16</td>
</tr>
<tr>
<td>Drill bits - top hammer & DTH - button carbide</td>
<td>Body wash - Excessive steel wear on bit body and bit face</td>
<td>17</td>
</tr>
<tr>
<td>Drill bits - top hammer & DTH - button carbide</td>
<td>Carbide snake skin wear pattern</td>
<td>18</td>
</tr>
<tr>
<td>Drill bits - top hammer - blade carbide</td>
<td>Blade carbide insert corner fractured</td>
<td>23</td>
</tr>
<tr>
<td>Drill bits - top hammer - blade carbide</td>
<td>Lost blade carbide insert</td>
<td>24</td>
</tr>
<tr>
<td>Drill bits - top hammer - blade carbide</td>
<td>Traverse crack in blade carbide</td>
<td>25</td>
</tr>
<tr>
<td>Drill bits - top hammer - blade carbide</td>
<td>Longitudinal cracks in blade carbide</td>
<td>26</td>
</tr>
<tr>
<td>Drill bits - top hammer - blade carbide</td>
<td>Shattered blade carbide insert</td>
<td>27</td>
</tr>
<tr>
<td>Drill bits - top hammer - tapered body</td>
<td>Skirt wring off</td>
<td>29</td>
</tr>
<tr>
<td>Drill bits - top hammer - tapered body</td>
<td>Split skirt</td>
<td>30</td>
</tr>
<tr>
<td>Drill bits - top hammer - threaded body</td>
<td>Skirt wring off</td>
<td>33</td>
</tr>
<tr>
<td>Drill bits - top hammer - threaded body</td>
<td>Split skirt</td>
<td>34</td>
</tr>
<tr>
<td>Drill bits - DTH</td>
<td>Shank break across the retaining ring bearing surface</td>
<td>36</td>
</tr>
<tr>
<td>Drill bits - DTH</td>
<td>Shank break across the drive splines</td>
<td>37</td>
</tr>
<tr>
<td>Drill bits - DTH</td>
<td>Broken blow tube / foot valve</td>
<td>38</td>
</tr>
<tr>
<td>Drill bits - DTH</td>
<td>Broken piston striking face</td>
<td>39</td>
</tr>
<tr>
<td>Drill bits - DTH</td>
<td>Shoulder damage</td>
<td>40</td>
</tr>
<tr>
<td>Drill bits - DTH</td>
<td>Piston striking face damage</td>
<td>41</td>
</tr>
<tr>
<td>Couplings & Couping Adapters</td>
<td>Dented, chipped, or damaged striking end</td>
<td>43</td>
</tr>
<tr>
<td>Couplings & Couping Adapters</td>
<td>Longitudinal crack</td>
<td>44</td>
</tr>
<tr>
<td>Couplings & Couping Adapters</td>
<td>Transversal crack</td>
<td>45</td>
</tr>
</tbody>
</table>
Failure Summary Index

Part 2 of 2

<table>
<thead>
<tr>
<th>Product</th>
<th>Failure/Problem Type</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drill rods - Integral, Tapered, & Shank rods</td>
<td>Striking end mushrooming</td>
<td>48</td>
</tr>
<tr>
<td>Drill rods - Integral, Tapered, & Shank rods</td>
<td>Failure at shank end</td>
<td>49</td>
</tr>
<tr>
<td>Drill rods - Integral, Tapered, & Shank rods</td>
<td>Failure in middle of shank</td>
<td>50</td>
</tr>
<tr>
<td>Drill rods - Integral, Tapered, & Shank rods</td>
<td>Failure at the beginning of collar radius</td>
<td>51</td>
</tr>
<tr>
<td>Drill rods - Integral, Tapered, & Shank rods</td>
<td>Failure at the collar</td>
<td>52</td>
</tr>
<tr>
<td>Drill rods - Integral rods</td>
<td>Carbide failure</td>
<td>54</td>
</tr>
<tr>
<td>Drill rods - Integral rods</td>
<td>“Propeller” carbide wear</td>
<td>55</td>
</tr>
<tr>
<td>Drill rods - Tapered rods</td>
<td>Failure at the end of taper radius</td>
<td>57</td>
</tr>
<tr>
<td>Drill rods - M/F extension and M/F drift & tunneling rods</td>
<td>Failure across the female threads</td>
<td>59</td>
</tr>
<tr>
<td>Drill rods - M/F extension and M/F drift & tunneling rods</td>
<td>Deformation of female end</td>
<td>60</td>
</tr>
<tr>
<td>Drill rods - M/F extension and M/F drift & tunneling rods</td>
<td>Vertical crack on the female end</td>
<td>61</td>
</tr>
<tr>
<td>Drill rods - Extension, drift & tunneling, shank rods</td>
<td>Excessive male thread wear with pitting and/or galling</td>
<td>62</td>
</tr>
<tr>
<td>Drill rods - Extension, drift & tunneling, shank rods</td>
<td>Failure behind the male threads</td>
<td>63</td>
</tr>
<tr>
<td>Drill rods - Extension, drift & tunneling, shank rods</td>
<td>Male thread end broken at face</td>
<td>64</td>
</tr>
<tr>
<td>Drill rods - Extension, drift & tunneling, shank rods</td>
<td>Failure in shaft of rod</td>
<td>65</td>
</tr>
<tr>
<td>Drill rods - Extension, drift & tunneling, shank rods</td>
<td>Inner surface compromised</td>
<td>66</td>
</tr>
<tr>
<td>Drill rods - Extension, drift & tunneling, shank rods</td>
<td>Outer surface compromised</td>
<td>67</td>
</tr>
<tr>
<td>Shank adapters</td>
<td>Dented, chipped, or damaged striking end</td>
<td>71</td>
</tr>
<tr>
<td>Shank adapters</td>
<td>Failure across the splines</td>
<td>72</td>
</tr>
<tr>
<td>Shank adapters</td>
<td>Spline shoulder wear on bottom</td>
<td>73</td>
</tr>
<tr>
<td>Shank adapters</td>
<td>Spline shoulder wear on top</td>
<td>74</td>
</tr>
<tr>
<td>Shank adapters</td>
<td>Galling and pitting on the splines</td>
<td>75</td>
</tr>
<tr>
<td>Shank adapters</td>
<td>Failure through flushing port</td>
<td>76</td>
</tr>
<tr>
<td>Shank adapters</td>
<td>Failure at front bushing bearing surface</td>
<td>77</td>
</tr>
<tr>
<td>Shank adapters</td>
<td>Failure behind the threads</td>
<td>78</td>
</tr>
<tr>
<td>Shank adapters</td>
<td>Failure across the threads</td>
<td>79</td>
</tr>
<tr>
<td>Shank adapters</td>
<td>Damaged thread end</td>
<td>80</td>
</tr>
<tr>
<td>Shank adapters</td>
<td>Pitting and/or galling on the threads</td>
<td>81</td>
</tr>
</tbody>
</table>